This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

The Reaction of Organo-Selenium and -Tellurium Compounds with Dihalogens, Interhalogens, and Pseudohalogens

N. A. Barnes^a; P. Bhattacharyya^a; S. M. Godfrey^a; R. T. A. Halton^a; I. Mushtaq^a; R. G. Pritchard^a University of Manchester Institute of Science and Technology, Manchester, UK

To cite this Article Barnes, N. A., Bhattacharyya, P., Godfrey, S. M., Halton, R. T. A., Mushtaq, I. and Pritchard, R. G.(2005) 'The Reaction of Organo-Selenium and -Tellurium Compounds with Dihalogens, Interhalogens, and Pseudohalogens', Phosphorus, Sulfur, and Silicon and the Related Elements, 180: 3, 783 - 786

To link to this Article: DOI: 10.1080/10426500590906265
URL: http://dx.doi.org/10.1080/10426500590906265

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 180:783-786, 2005

Copyright © Taylor & Francis Inc.

ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426500590906265

The Reaction of Organo-Selenium and -Tellurium Compounds with Dihalogens, Interhalogens, and Pseudohalogens

N. A. Barnes

P. Bhattacharyya

S. M. Godfrey

R. T. A. Halton

I. Mushtaq

R. G. Pritchard

University of Manchester Institute of Science and Technology, Manchester, UK

Adducts of selenium and tellurium donor molecules with dihalogens, interhalogens, and pseudohalogens exhibit a remarkable structural diversity. Some interesting examples of these materials and key factors influencing their formation, structures, and bonding are discussed.

Keywords Charge-transfer; dihalogen complexes; selenium; tellurium

INTRODUCTION

The extremely varied solid-state structures of adducts of Group 16 donors with dihalogen and interhalogen acceptors have only recently been elucidated. The donor atom (Se, Te), organic substituents, reaction stoichiometry, and in some cases, the solvent permittivity can influence the solid-state structure of the adduct. An overview of the common adduct types, and some recent advances in this area, are given here.

CHARGE-TRANSFER (CT) COMPLEXES

Adducts formed between a donor and (usually) I₂, IBr, or ICl extreme lengthening of the I–X bond may occur. There is a *grey area* in which it

Received January 21, 2004; accepted October 8, 2004.

Dedicated to the late Prof. C. A. McAuliffe (1941–2002).

Address correspondence to S. M. Godfrey, University of Manchester Institute of Science and Technology, Department of Chemistry, Manchester M60 1QD, United Kingdom. E-mail: stephen.m.godfrey@umist.ac.uk

is difficult to categorise the adduct as CT, ionic with cation-anion interactions, or possessing 3c-4e bonds. For example, we describe Me_2SeI_2 as a CT species $[d(I-I) = 2.916\ (3)\ Å]$, but du Mont, on the basis of d (Se–I) [2.768\ (3)\ Å] invokes a 3c–4e or "triiodide" model.²

SEE-SAW ADDUCTS

Formed via reacting R_2E with X_2 (X = Cl, Br, I). In some cases secondary bonding as observed for Me_2SeCl_2 , distorts the geometry at selenium towards octahedral.

POLYIODIDE AND EXTENDED SPOKE STRUCTURES

The *extended spoke* structures of mbts. $2I_2$ and mbts.2IBr (mbts = N-methylbenzothiazole-2-selone) are surprisingly different. 1 The former is interpreted by Devillanova as $[RSe-I]^+$ interacting with I^- , which, in turn, interacts with I_2 , whereas in mbts.2IBr an essentially covalent Se-I bond interacts with IBr_2^- .

T-SHAPED ADDUCTS

e.g. $(Me_2N)_3PSeBr_2^3$ and mbts. Br_2 , rarer for I_2/IBr acceptors. 1,2-bis-(3-methyl-imidazolin-2-ylium iodobromoselenamide) ethane³ contains both ionic $[C-SeI]^+\cdots Br^-$ and covalent I-Se-Br structural motifs in two independent molecules within the same asymmetric unit.

"TRUE" COVALENT S-I BONDS

Unperturbed covalent Se–I bonds, such as in 2,4,6-tris(tert-butyl)-phenyl(iodo)selenide,⁴ are rare. (Ph₂Se₂I₂)₂,¹ prepared from Ph₂Se₂/I₂ is a centrosymmetric dimer with one selenium atom of each diselenide acting as a donor towards I₂ with the other atom acting as a very weak acceptor. Changing the chalcogen produces another isomeric form of the *PhEI* moiety. The Ph₂Te₂/I₂ reaction produces square Ph₄Te₄I₄, which exhibits long Te–Te bonds [3.125 (2)–3.175 (2) Å] c.f. 2.705 (1) Å for Ph₂Te₂. I···I contacts create an extended structure.

NEW ADDUCT MOTIFS

 $PhSeX_3$ (X = CI, Br)

Ph₂Se₂ reacts with SO₂Cl₂ or Br₂ to give PhSeX₃. In PhSeBr₃, molecules are linked through a long Br—Br bond [3.0046 (12) Å]. Notably, this

structure illustrates molecular square-based pyramidal geometry at Se, a charge-transfer interaction, and discrete Br^- anions in the lattice. Dibromine bond fission has occurred, which adds Br(1) and Br(4) across the selenium atom. In addition a Br-Br bond is retained in the structure despite being lengthened. The terminal bromine in this CT arrangement bridges to a bromine in an adjacent molecule, giving a polymeric array. $PhSeCl_3$ exhibits a polymeric structure where molecules are linked via bridging chlorine atoms with square based pyramidal geometry at $Se\ c.f.\ PhTeX_3\ (X=Cl,\ Br).^5$

$Ph_4Se_4X_4$ (X = CI, Br)

Prepared from Ph₂Se₂/X₂, Ph₄Se₄X₄ are isostructural with Ph₄Te₄I₄. In Ph₄Se₄Br₄ (Figure 1) the Se₄ unit forms via weak Se—Se bonds [3.004 (2)–3.051 (2) Å], c.f. 2.287 (2) Å in Ph₂Se₂. These squares are further linked by long Br··· Br contacts [3.693 (2)–3.798 (2) Å], just within the van der Waals radius for two bromine atoms (3.9 Å), giving a network of Se₄ and Br₄ squares.

$R_3PSe(R)X (X = Br, I)$

In common with $Ph_2Se_2I_2$, $Ph_4Se_4Br_4$ acts a source of PhSeX. We described the first example of an noninternally chelating RSeI coordination with a donor, $Ph_3PSe(Ph)I$, as a CT adduct containing $PhSe,^{-1}$ based on the geometry at selenium and the great similarity with $Ph_3PI_2,^1$ long considered a CT compound. Support for our hypothesis was provided by $(Me_2N)_3PSe(Ph)I$, in which $P-Se-I=114.5~(2)^\circ$, with a long Se-I contact, 3.825~(1) Å.

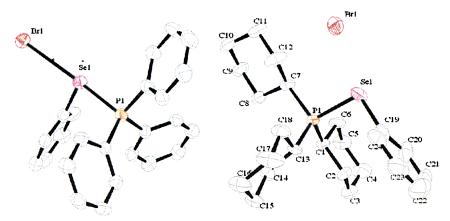



FIGURE 1

FIGURE 2 Structure of R₃ PSe(Ph)Br.

Ph₄Se₄Br₄/PR₃ Systems

Ph₃PSe(Ph)Br (Figure 2) and Me₃PSe(Ph)Br have a distorted T-shaped geometry at Se and an essentially linear P—Se—Br bond. Cy₃PSe(Ph)Br has an ionic structure with negligible cation-anion contacts, a short P—Se bond and a bent geometry at Se.

Me₃PSe(Ph)I.CH₂Cl₂ vs Me₃PSe(Ph)Br

Se—X contact is much longer for iodide compared to bromide. In $Me_3PSe(Ph)I$, phosphorus is cis to iodine, but trans to bromine in $Me_3PSe(Ph)Br$. The situation is complicated by the CH_2Cl_2 molecule, which significantly interacts with the selenium center in $Me_3PSe(Ph)I.CH_2Cl_2$.

REFERENCES

- [1] P. D. Boyle and S. M. Godfrey, Coord. Chem. Rev., 223, 265 (2001).
- [2] W. W. duMont, A. M. Salzen, F. Ruthe, E. Seppälä, G. Mugesh, F. A. Devillanova, V. Lippolis, and N. Kuhn, J. Organomet. Chem., 623, 14 (2001).
- [3] M. C. Aragoni, M. Arca, A. J. Blake, F. A. Devillanova, W. W. du Mont, A. Garau, F. Isaia, V. Lippolis, G. Verani, and C. Wilson, *Angew. Chem.*, *Int. Ed. Engl.*, 40, 4229 (2001).
- [4] W. W. duMont, S. Kubiniok, K. Peters, and H. G. von Schnering, Angew. Chem., Int. Ed. Engl., 26, 780 (1987).
- [5] N. W. Alcock, W. D. Harrison, and C. Howes, JCS Dalton Trans., 1709 (1984).